ADDITIVE AND MULTIPLICATIVE MAGIC CUBES

MARIÁN TRENKLER

Šafárik University, Košice, Slovakia

A magic square (a square array containing natural numbers $1, 2, \ldots, n^2$ such that the sum of the numbers along every row and column and every diagonal is the same) has fascinated people for centuries. On Figure 1 are depicted three square tables 3×3 , 4×4 a 5×5 containing different natural numbers in such a way that the product of numbers in every row, column and diagonal is the same. (In the first table the product is 6^3 , in the second 7! and in the third 9!.) Such tables are called *multiplicative magic squares*.

							_	1	15	42	16	36
			1	24	14	15		14	32	9	3	30
12	1	18	21	10	4	6		27	6	10	28	8
9	6	4	20	7	18	2		20	7	24	54	2
2	36	3	12	3	5	28		48	18	4	5	21

FIGURE 1 - MULTIPLICATIVE MAGIC SQUARES

An additive magic cube is a natural generalization of a magic square. In 1686, Adamas Kochansky extended magic squares to three dimensions. The first additive magic cube probably appeared in a letter of *Pierre de Fermat* from 1640. There is a lot of information and many interesting results about magic squares and cubes in the references and web-pages.

An *additive magic cube* of order n is a cubical array

$$\mathbf{M}_n = |\mathbf{m}_n(i, j, k); \quad 1 \le i, j, k \le n|$$

containing natural numbers $1, 2, 3, ..., n^3$ such that the sum of the numbers along every row and diagonal is the same, i.e. $\frac{n(n^3+1)}{2}$. By a row of a magic cube we mean an *n*-tuple of elements having the same coordinates on two places. Every additive magic cube of order *n* has exactly $3n^2$ rows and 4 diagonals.

FIGURE 2 - ADDITIVE MAGIC CUBE M_3

A multiplicative magic cube of order n is a cubical array

$$\mathbf{Q}_n = |\mathbf{q}_n(i, j, k); \quad 1 \le i, j, k \le n|,$$

containing n^3 mutually different natural numbers such that the product of the numbers along each row and every of its four diagonals is the same. We call this product *magic constant* and denote $\sigma(\mathbf{Q}_n)$.

Figure 3 - Multiplicative magic cube \mathbf{Q}_3

In [7] it is proved that an additive magic cube \mathbf{M}_n of order n exists for every $n \neq 2$. Constructions consider three cases (n is an odd integer, if n is an even integer then we distinguish whether if n is or is not divisible by four.)

If we know a construction of $\mathbf{M}_n = |\mathbf{m}_n(i, j, k)|$ then we can easily make a multiplicative magic cube

$$\mathbf{Q}_n = |\mathbf{q}_n(i, j, k) = 2^{\mathbf{m}_n(i, j, k) - 1}; 1 \le i, j, k \le n|$$

with the magic constant $\sigma(\mathbf{Q}_n) = 2^{\frac{n(n^3-1)}{2}}$. This constant is very big and so the following question can be asked: What is the smaller magic constant of \mathbf{Q}_n ?

By the end of the 19-th century (see [2,p.351]) mathematicians began to consider also 4-dimensional magic cubes. But only in 2001 the following result was published:

Theorem. An additive magic d-dimensional cube of order n exists if and only if d > 1 and $n \neq 2$ or d = 1.

In Figure 4 are depicted the nine layers of a magic 4-dimensional cube of order 3. The element $\mathbf{m}(1,1,1,1) = 46$ is in four rows containing the triplets of numbers {46,8,69}, {46,62,15}, {46,17,60} and {46,59,18}. In the eight diagonals there are the triplets {46,41,36}, {69,41,13}, {15,41,67}, {35,41,47}, {60,41,22}, {26,41,56}, {53,41,29} and {64,41,18}. (Note. This picture is a magic square of order 9 with some special proprieties.) This cube was constructed

$$\mathbf{m}(i_1, i_2, i_3, i_4) = [(i_1 - i_2 + i_3 - i_4 + \frac{n+1}{2} - 1) \pmod{n}]n^3 + [(i_1 - i_2 + i_3 + i_4 - \frac{n+1}{2} - 1) \pmod{n}]n^2 + [(i_1 - i_2 - i_3 - i_4 + 3\frac{n+1}{2} - 1) \pmod{n}]n + [(i_1 + i_2 + i_3 + i_4 - 3\frac{n+1}{2} - 1) \pmod{n}] + 1$$

46	8	69	17	78	28	60	37	26
62	42	19	51	1	71	10	80	33
15	73	35	55	44	24	53	6	64
59	39	25	48	7	68	16	77	30
12	79	32	61	41	21	50	3	70
52	5	66	14	75	34	57	43	23
18	76	29	58	38	27	47	9	67
49	2	72	11	81	31	63	40	20
56	45	22	54	4	65	13	74	36

FIGURE 4 - MAGIC 4-DIMENSIONAL CUBE OF ORDER 3

Similarly we can consider the existence of multiplicative magic d-dimensional cubes for any natural d.

References

- 1. A.Adler, Magic N-cubes form a free matroid, The Electronical Journal of Combinatorics 4 (1997).
- 2. W.S.Andrews, Magic squares and cubes, Dover, New York, 1960.
- 3. M.Trenkler, A construction of magic cubes, The Mathematical Gazette **84** (March 2000), 36–41.
- 4. M.Trenkler, Magic p-dimensional cubes, Acta Arithmetica 96 (2001), 361-364.
- M.Trenkler, Konštrukcia magických p-rozmerných kociek, Obzory matematiky, fyziky a informatiky 29 (2000), 19–29.
- M.Trenkler, Súčinové magické štvorce a kocky, Obzory matematiky, fyziky a informatiky 31 (2002) (to appear).
- 7. M.Trenkler, How to make additive and multiplicative magic cubes, (submitted).

INSTITUTE OF MATHEMATICS, ŠAFÁRIK UNIVERSITY, JESENNÁ 5, 041 54 KOŠICE, SLOVAKIA E-mail address: trenkler@science.upjs.sk